You will need a scientific or graphing calculator for today's assignment.

Warm-up: Put at top of today's paper for 4.5

a) evaluate without a calculator:

$$
\frac{\log 10}{\log 100}=\frac{1}{2}
$$

NOW VERIFY WITH A CALCULATOR!
b) evaluate with a calculator:

$$
\ln 10=2.3
$$

$$
\ln 100=4,6
$$

$$
\frac{\ln 10}{\ln 100}=\frac{2.3}{4.6}=\frac{1}{2}
$$

Solution will be the same due to ratios computed with like bases.

Notes: 4.5 Solving Logarithmic Equations
Reminders:

$$
\begin{aligned}
& \text { because } \\
& 10^{\circ}=1 \\
& 10^{\prime}=10
\end{aligned}
$$

Notes: 4.5

Reminder: $\frac{\text { Rog0 }}{10}=$ no solution (because $10^{x} \neq 0$) $\log \left(\right.$ neg \#) $=$ no solution $\quad 10^{x} \neq$ neg \# In0 = no solution

$$
e^{x} \neq 0
$$

$$
\ln \left(\text { neg \#) }=\text { no solution } e^{x} \neq n e g \#\right.
$$

The same is true for any given base!

Notes: 4.5 Solving Logarithmic Equations

- Isolate exponential term.
- Apply In or log to both sides of the equation.
- "Bring down" the exponent.
- Solve for \mathbf{x}.

Important:

*If given base e, use In to solve.
*If given base 10, use log to solve.
*If given any other base, use In or log. natural log used most often \uparrow

Show work! Clearly show all steps.
16. $3^{2 x-1}=5$

$$
\begin{aligned}
& \frac{\ln 3^{2 x-1}}{(2 x-1) \ln 3)}=\frac{\ln 5}{\ln 3} \\
& 2 x-1=\frac{\ln 5}{\ln 3} \\
& \frac{1}{\ln 3} 2 x=\frac{1}{2}\left(\frac{\ln 5}{\ln 3}+1\right)
\end{aligned}
$$

- Isolate exponential term
- Apply In or log to both sides of the equation
- "Bring down" the exponent
- Solve for x (exact value and approximate value)

$$
x \approx 1,232487
$$

Show work! Clearly show all steps.

18. $\frac{2 e^{12 x}}{2}=\frac{17}{2}$

$$
\ln e^{12 x}=\ln \frac{17}{2}
$$

$$
12 \times \times 1 / e=\ln \frac{17}{2}
$$

- Isolate exponential term
- Apply In or log to both sides of the equation
- "Bring down" the exponent
- Solve for x (exact value and approximate value)

Show work! Clearly show all steps.
32. $125^{x}+5^{3 x+1}=200$

$$
\begin{aligned}
& 5^{3 x}+5^{3 x+1}=200 \\
& 5^{3 x}+5^{3 x} \cdot 5^{1}=200 \\
& 5^{3 x}\left(1+5^{1}\right)=200 \\
& 5^{3 x}(6)=\frac{200-2}{6}=2
\end{aligned}
$$

$$
5^{3 x}=\frac{100}{3} \longrightarrow \text { continued on next slide }
$$

$$
\begin{aligned}
& \log ^{5 x}=\log \frac{100}{3} \\
& \frac{\beta x \log 5}{3 \log 5}=\frac{\log \frac{100}{3}}{3 \log 5} \\
& x=\frac{\log \frac{100}{3}}{3 \log 5} \quad x \approx 0.726249 \\
& \text { exact value }
\end{aligned}
$$

Show work! Clearly show all steps.
Use like bases on both sides to solve, if possible. If not, then apply \ln or \log to both sides.
3. $5^{x-1}=125$

19. CHECK ANSWER:

$$
\mathrm{t}=\frac{\ln \frac{10}{3}}{12 \ln 1.025}
$$

25. CHECK ANSWER: $\mathrm{x}=\frac{-14}{\log 3}$
$14 \log 0.1 \lll \log 0.1$ can be
book answer $\rightarrow \mathrm{t}=\frac{14 \log 0.1}{\log 3} \quad$ simplified further. (which will be required on the unit test)

