

You will need a scientific or graphing calculator for today's assignment.

desmos		Math	Math Tools -		Resources 🔻			
main	abc	func		DEG	ĸ	3	clear all	æ
a^2	a^b	a	7	8	9	÷	%	$\frac{a}{b}$
\checkmark	$\sqrt[n]{}$	π	4	5	6	×	-	\rightarrow
sin	cos	tan	1	2	3	_		€
()	,	0		ans	+	•	

Warm-up: Put at top of today's paper for 4.5

a) evaluate without a calculator: $\frac{\log 10}{\log 100} = \boxed{\frac{1}{2}}$ NOW VERIFY WITH A CALCULATOR!

b) evaluate <u>with</u> a calculator:

 $\ln 10 = 2.3$

 $\ln 100 = 4.6$

 $\frac{\ln 10}{\ln 100} = \frac{2.3}{4.6} = \begin{bmatrix} 1\\ 2 \end{bmatrix}$

Solution will be the same due to ratios computed with like bases.

Notes: 4.5 Solving Logarithmic Equations

The same is true for any given base!

Notes: 4.5 Solving Logarithmic Equations

- Isolate exponential term.
- Apply In or log to both sides of the equation.
- "Bring down" the exponent.
- Solve for x.

Important:

*If given base e, use In to solve.

*If given base **10**, use **log** to solve.

*If given any other base, use In or log. natural log used most often 1

Show work! Clearly show all steps.

- Isolate exponential term
- Apply In or log to both sides of the equation
- "Bring down" the exponent
- Solve for x (exact value and approximate value)

Show work! Clearly show all steps.

18.
$$\frac{2e^{12x}}{2} = \frac{17}{2}$$

$$|ne^{12x} = |n\frac{17}{2}$$

$$|2x| = |n\frac{17}{2}$$

$$\chi = \frac{1}{12} \ln \frac{17}{2}$$

$$\chi = \frac{1}{12} \ln \frac{17}{2}$$

$$\chi \approx .178339$$

- Isolate exponential term
- Apply In or log to both sides of the equation
- "Bring down" the exponent
- Solve for x (exact value and approximate value)

Show work! Clearly show all steps.

- 32. $125^{x} + 5^{3x+1} = 200$
 - $5^{3x} + 5^{3x+1} = 200$ (Isolate exponential term $5^{3x} + 5^{7} \cdot 5' = 200$
 - $5^{3\times}(1+5')=200$ "bring down" the
 - $5^{3\times} \begin{pmatrix} 6 \\ 5 \end{pmatrix} = 200 2$ Solve for x 6 2 $5^{3\times} = \frac{100}{3} \longrightarrow \text{Continued on next slide}$

- **Rewrite with like bases**, then factor
- Apply In or log to both sides of the equation
- exponent

exact value

Show work! Clearly show all steps.Use like bases on both sides to solve, if possible.If not, then apply ln or log to both sides.

3.
$$5^{x-1} = 125$$

